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Abstract 

 

This paper presents a case study based on a complex printing of a mathematical object 
challenged as a mathematical problem by Kuiper and Nash in the 50s. 

The purpose was to build a physical representation of this abstract mathematical object.  

The problem was to deal with a large amount of data in highly complex topology with cost 
and accuracy constraints 

We have pointed out several problems relatives to cutting 3D highly waved objects and 
propose different ways for cutting regarding aesthetic aspect and other constraints. 

This paper raises interesting research questions related to data storage structure and 
manipulation of highly complex geometries. 

 
 
 
 
 
 
 
 

1 Introduction 

 
In the  1950s, J. Nash [1] and N. Kuiper [2] worked on 

isometric imbeddings and demonstrated the theoretical 
existence of an abstract mathematical structure called flat 
torus. Using the results of Mikhail Gromov [3] on convex 
integration thergeneral and associated in the Hevea 
Project [4][5][6], V. Borrelli, S. Jabrane, F. Lazarus and B. 
Thibert [7] realized for the first time synthetic images 
(fig.1, fig. 5) representing the object, as announced on the 
20th of April 2012 in the press release [8] of the French 
National Center for Scientific Research. 

 

Fig. 1 computed outside view of a flat torus copied from [7] 

Francis Lazarus and Boris Thibert came in December 
on our prototyping platform asking us to print the torus to 

test the surface roughness that could be reached with a 
3D printer and could be visually and by touch detected for 
different scale factors. One challenging issue was to allow 
B. Tiber to "show" the shape and roughness of the torus 
to one of his PhD jury member who is blind.  

As they were used to compute 3D objects and were 
familiar with the 3D file formats, there where no visible 
problem in printing the object. If ever, we usually use 
professionals softwares on a well sized computer to repair 
structural defects on files generated by 3D software. 

Nevertheless, all our attempts to modify the model 
structure, to cut it in smaller parts, to dig inside to lighten 
the final result, simply failed in the limits of the power of 
our computer. 

This paper describes why we encountered these 
problems and how we managed to solve them and finally 
printed the famous torus on a Zcorp ZPrinter® 650 color 
3D printer 

2 Materials, initial data and expected 
results 

2.1 Printer technology 

 
The printer used is inkjet 3D printing systems, which 

constructs the part, layer by layer in a plaster powder 
type, by dumping coloured plots of binder in place where 
we want to produce the solid material. This technology is 
suitable for printing this model because it doesn’t need 
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any additional support material and provides a colored 
result. 

 The maximum size of the bounding box is 
254x381x203 mm3 (10x15x8 inches) with a resolution of 
540x600x200 dpi and a minimal plot size, which is a 
sphere, of 300µm diameter. 

The construction speed depends on the size of the 
part, but is usually close to 1cm high per hour. 

The bounding box size of the model is approximately 
250x250x80mm. 

After printing, we use as post-treatment an infuser 
which impregnates of wax the part for a better surface 
quality and a stronger result. 

2.2 Data structure and model size  

 
The mathematical theory of the construction of the 

torus is explained in [7] and very well popularized in [6]. 

 

Fig. 2 Isometric embedding of a vertical, a horizontal, a 

diagonal and an anti-diagonal copied from [6] 

 
As authors of the model wanted to view as much 

details as possible, they calculated the size of the model 
to be consistent with our printer definition, taking care of 
the theoretical number of voxels1 per inch to maximise the 
point’s number for the best result for their part. 

Doing so, they gave us a VRML2 file composed by 16 
million of points and 32 million of triangles, corresponding 
to the external surface of a flat torus with 3 levels of 
corrugation. This represents approximately 0.6 gigabytes 
in binary mode, which does not seem to be impossible to 
manipulate. In fact, professional software we use to fix 
models and prepare 3D printing, running on a computer 
with eight processors and sixteen Giga-Bytes of RAM3 
doesn’t have any problems to load the part, but they were 
just unable to cut or modify it.  

When using 3D printers and many other additive 
manufacturing technologies, it is important to keep in 
mind that the part price is proportional to the weight. As 
the final part weight was evaluated at 2.5 kg, it was very 
important to be able to print a hollow part to save material 
and price. For testing the surface roughness, we 
expected to be able to print only a quarter or any portion 
of the torus. As this requires cutting and keeping only a 
part of the model, this was not possible with our computer 
and software. 

2.3 The First printed model 

 
To overcome encountered problems, we asked to the 

authors to provide us a completely hollowed model, with a 

                                                 
1
 Volumetric pixel 

2
 Virtual Reality Modeling Language 

3
 Random Access Memory 

simple hollow torus inside the model. We also asked 
them, to reduce the ASCII4 file size, to reduce the 
precision from 1/1000mm to 1/100mm, to reduce the 
number of spaces and tabulations in the VRML file. We 
just had to reverse the surface’s normal of the inside 
torus, by reverting (in VIM5) point’s order in the Indexed-
Face-Set6 [11] to make the part really hollowed. The 
solution used to empty the powder remaining inside the 
torus was to print it in two separates half torus. This was 
obtained by printing a first job from the beginning to a 
layer chosen to minimize the visual impact of cuts (fig 3), 
and then a second job for the remaining layers to obtain a 
part that has been glued afterward over the previous part. 

This way of doing allows the 3D printer driver to 
compute the required horizontal sections (layers) of the 
simplified torus, and doesn’t require any other software to 
separate it. Thus this experience shows that the software 
is able to compute the plane cross-section of the torus, 
which result is a polygonal closed contour, and send it to 
the printer, but is unable to cut the volume, which 
expected result should be two or more separated 
volumes. 

 

Fig.3 The first 3D printed half flat torus 

As result of this cutting and gluing operation, we save 
1kg of powder, and so, approximately 1500€ on the price 
cost of the built. 

The result (fig.4) has been exposed the day after the 
printing during the day of ‘’Les sciences du numérique à 
Grenoble’‘[10] in the Jean Kuntzmann building on 2012 
December the 14

th
. 

 

Fig.4 The first 3D printed flat torus 

2.4 Printing the internal view 

Mathematicians also expected a view of the inner side 
of the torus surface. As thickening process alters details 

                                                 
4
 American Standard Code for Information Interchange 

5
 VIM : the best and very well nown text editor www.vim.org 

6
 In VRML normal to the plane is defined by the polygon point 

order in the coordindex section of IndexedFaceSet geometry 
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and thin corrugations, it is not possible to print a single 
object on which inner and outer surfaces respect the flat 
torus topology. 

 

Fig. 5 computed inside view of a flat torus copied from [7] 

One of the challenges to print the internal view was to 
be able to thicken the given surface by a skin as thin as 
possible to reduce the cost and to cut the model in a nice 
cutting plane to get an artistic inside view of the torus. A 
second challenge was to rebuild from the cut surfaces 
and their borders a single and well defined volume 
(according to geometric modelling criteria of closed 
boundary, manifold and not self-intersecting) that could 
be printed by additive manufacturing. 

If we look to the dataset and to the structure (fig.5), 
which is a smooth fractal, we can enumerate several 
problems which can be responsible of the commercial 
software inability to cut and transform it. 

The following sections describe problems encountered 
and solutions used to thicken and to cut the part properly. 

As the dataset was given as a 2D table of points 
ordered along the green horizontal line (fig.2), the first 
operation was to compute the transposed matrix to make 
the dataset ordered along the black vertical line (fig.2). 
This new dataset has many advantages like giving the 
ability of analysing a portion of the data without reading 
and loading all the dataset. 

3 Thicken the part 

The main idea was to thicken the part in a graphical 
way unambiguous about the interesting surface. That 
means that, we don’t want people to feel that the external 
surface has to be considered. 

The simplest way to do that should be to add a 
standard torus outside the surface with a diameter 
calculated to be as close as possible of the inside 
surface. According to the material used by the printer, this 
distance must be at least of 2 mm. 

This solution is not the cheapest one, so we preferred 
a solution with a skin close to a constant distance of the 
surface, with as few points as possible not to increase to 
much the part weight and complexity. 

3.1 Thicken a torus 

Thicken a 3D volume consists on analysing 
intersections of multiple plans and, in many cases, would 
result on increasing the number of facets. 

Most of time, thicken a volume can be realised by 
thicken 2D layers following the z-axis7 of the sliced 
volume. This technic can only be a problem when the 
slope variation is greater than the added skin. It can be 
considered like evidence that it can be compensated with 
taking care of the position of the surface on adjacent 

                                                 
7
 Z-axis is usually the vertical axes 

layers, but is often overlooked (fig.6) in slicers used by 3D 
printers. 

 

Fig. 6 aberration in slicing volume with thin surface 

For a torus, even if it is very wavy like ours, the best 
way to thicken it, layer by layer, is to consider each 
successive layer as successive plane rotating around its 
center, perpendicular to its median plan. 

If we have a look on the torus (fig.4), we can be sure 
that the perimeter generated by thickening a single layer 
will be approximately the same for all the layers. 
Consequence for calculation is to transform an O(n

i+1
) 

algorithm in an O(n
i
) one. 

3.1.1 Thicken optimised algorithm used. 

As we know many things on the data set and the 3D 
structure, we used optimisations that could be exploited in 
many case with highly complex geometry. 

First, as the part is a torus, only one layer, i.e. one 
black line (fig.2) of the dataset is used to compute a 
thicken layer and this thickened layer is repeated by 
rotation around the principal axis of the torus. 

2D Thickening algorithm consists on creating a line 
which is for each point at a constant distance of the 
original one (fig.7). In a 2D discrete space consisting of 
line segments, the first step is to calculate all the 
segments (red) of thicken distance away from the surface 
(purple) to thicken. 

 

Fig.7 description of thickening algorithm 

Points of reference used in the case of convex corners 
(A: fig.7) are usually the intersection point (B: fig.7) of the 
two adjacent segments, exactly like for concave angle (C: 
fig.7). 

For important convex angle (E: fig.7), it is necessary to 
compute an additional point. The arbitrary chosen limit to 
consider the angle is ‘’important’’ was set to 90°. 
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Fig.8 sectional view of the torus surface and its convex 

perimeter 

Considering the cross-sectional view of the torus and 
the representation of its convex perimeter (fig.8), six 
facilitation were used to optimize and limit the amount of 
memory necessary to compute the thicken surface in the 
particular case of the flat torus. 
1) Data-set is organized in a well-structured squared 

grid so a cross section corresponds to a line in it. 
2) A point belonging to the convex perimeter is always 

on a convex angle and can’t interact with any other 
segment when thickening adjacent segments. 

3) A concave zone is always surrounded by 2 points 
belonging to the convex perimeter, and 2 different 
concave zones can’t interact together. 

4) The perimeter is divided into twelve areas (fig.8), so it 
is not necessary to use all points to calculate the next 
point of the convex perimeter. 

5) Small concave areas bounded by two close points of 
the convex perimeter (zoom: fig.8) can be ignored. 

6) Holes located inside the calculated surface (D: fig.7) 
are simply ignored.  

So, the thickening algorithm used started by calculating 
the convex perimeter using Jarvis-walk algorithm [12] 
taking into consideration the topology of the data-set and 
the forth facilitation, limiting for each point, the search to 
the next point to 1/12 of following points in sectional view. 

After that, for each concave area, we simply ignore all 
points if the distance between the two end points of the 
concave region is less than twice the added thickness. 

Then, for big concave zones, segments are stored in 
an indexed array, and for each calculated segment, we 
look for the nearest intersection point with all other 
calculated following segments. The intersection point 
found become the starting point of the intersected 
segment, which is set to be the next one to study. 

With all these facilitations, this algorithm calculates a 
thicken surface for a torus of 16 million of points and 
generates the VRML associated file in less than 1 
second. Of course, this algorithm is really dedicated to 
regular torus, and, as it is based on convex perimeter, 
only valid to increase volume outside the part. 

4 Cutting into separate parts 

 The main problem of this operation seems to be related 
to the presence of a large number of corrugations. We 
can represent as example the result of cutting a ‘’one 

level of corrugation’’ torus (fig.9), and notice that the result 
is not two but five separate parts. 

 

Fig.9 Cutting a corrugation with a cutting plane 

The main portion just above the cutting plane, not 
shown in this figure, the main portion under the cutting 
plane (top left of fig.9) and three small portions, (in green 
in top right of fig.9), which are located over the cutting 
plane. 

 If we consider this problem applied on the flat torus 
shown in (fig.5) which has three levels of corrugation, it is 
not five, but potentially an infinite and at least a very large 
number of separate parts. 

Cutting software’s are probably not optimized for this 
problem and, as each separate part is in fact just a 
surface, it must be closed along its flat face, usually with a 
Delaunay triangulation[13], to be transformed in a volume. 

Many other problems, described by C. FOREST in his 
PhD thesis [9], are related to the fact that cutting complex 
parts can generate topological aberrations, like generating 
null surfaces when several polygon’s nodes lies on the 
cutting plane surface.  

A very particular situation is when a single point or a 
single segment in the cutting plane is the unique contact 
point between two convex areas, like if one of the green 
fragments (fig.9) was attached to the main portion by only 
one point or one segment. In this situation, it is impossible 
de determine if the cutting result will be two or three parts. 
The printed result will be two or three parts depending on 
the bleed-compensation parameter that has been set up 
in the 3D printer driver. (See Appendix for details) 

4.1 Aesthetic and functional consideration 

Due to the presence of many corrugations, we can 
consider several different kinds of cut depending on the 
result we want to obtain, the reason the cut is for, and the 
position of potential fragments relative to cutting plan. 

If we have to cut the part to get a planar surface to 
stabilize the object on a support, we need to eliminate the 
green fragments whatever their relative position to the 
cutting plane, because the final result have to be a plan, 
and we don’t need to print isolated fragments. 

If we have to cut the part to show a particular structure 
inside a model, we need to keep attached fragments 
which are located over the cutting plane, and would result 
on an unsightly result, but we need to eliminate fragments 
which are located under the cutting plane and would result 
on isolated fragments which don’t need to be printed. 
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Fig.10 Two different methods of cutting 

 The choice between those solutions will often depend 
on the aesthetic of the expected result. It can also 
depend, in simulation [9] for example, on the process 
used to cut. 

4.2 Algorithm used for the cut 

Standard cutting algorithms are based on the 
determination of the list of polygons which straddle the 
plane and need to be cut into at least two polygons.  
Then, all polygons which lie entirely above the cutting 
plane are suppressed or moved to be separate from the 
initial part. 

In case we want to keep little fragments located over 
the cutting plane attached to the main portion of the torus 
which lies below it, we need to determine if a cut polygon 
belongs to the external perimeter of the part or not. 

A way to find the external perimeter is to start from a 
point belonging to the convex perimeter of the part on the 
cutting plane and to follow the intersection line between 
the cutting plane and the object until being back to the 
starting point. 

We took advantage of the structure of the dataset 
which is in fact based on a two dimensional array of 
quadrilateral, simply divided into two triangles in the 
VRML file. This array came from the construction of the 
torus which is derived from the deformation by isometric 
embedding of a flat square. This means that points are 
organised in the array as a continuous structured grid, like 
in the VTK8 STRUCTURED_GRID type [14]. 

As it is a flat torus, it is possible to navigate into the 
array with no limits re-entering by a side when getting out 
by the opposite one. 

There are many algorithmic advantages of this 
continuous data structure. In particular, it is possible to 
walk around the cut perimeter (fig.11) walking step by 
step through quadrilaterals from a starting point using 
intersection between cutting plane and other segments of 
the quadrilateral. 

In this figure, the intersections of the grid constitute the 
dataset points. The green line represents the points from 
the convex perimeter that are furthest from the 
geometrical center of the torus, and the red line 
represents the walk along the intersection line between 
the torus and something else. 

The first step of the algorithm is to walk along the 
green line to fine an intersection point with the cutting 
plane. 

The second step is to walk along the red line searching 
for each polygon the next one along the cutting plane. 

The third step is to suppress all the polygons that are 
on the side of the line being above the plane. 
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Fig.11 Walking along the cut perimeter 

4.3 Volume reconstruction. 

After all, we have three shapes: 

- The surface generated by thickening 

- The original torus surface for the area which is not 
concerned by the cutting process 

- The plane surfaces generated by the cut. 
Le last part of the process is to reassemble the shapes 

and to close the holes left by cutting. 
VRML description of part allows to duplicate points, 

and also allows to group shapes with their own indexed 
point set  so reassembling is not a real problem. 

The language can support any size of polygon, so, it is 
possible to fill holes by a big polygon including all points 
involved in the cut perimeter. It is not necessary to 
compute triangulation for these planar surfaces, as all 
VRML viewers will compute it when loading the file. 

4.4 Debugging method 

Debugging and calculation time are still problematic 
due to the size of the dataset. The solution which consists 
on working on smaller dataset is often insufficient 
because the number of particular and exceptional 
situations increases with the size of the dataset. 

To monitor debug information, I used graphical 
representations (fig.12) (fig.13) of polygon status modeled 
on the dataset structure in which each pixel color 
represents a value of the status. 

  

Fig.12 flat view of a cut of the torus 

The flat view (fig.12) of the cut corresponds exactly to 
the cuts realized with the two different methods (fig.10). 
The big red area corresponds to the principal cut and the 
two blue surrounded pink areas correspond to the two big 
fragments (fig.10) visible on the left side of the picture.  
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The focus on a small area on (fig.13) show us very 
small fragments as blue surrounded pink areas, which 
correspond to polygons that are located above the cutting 
plane but must be preserved and a small pink area into 
the red one, which corresponds to polygons that are 
located below the plane, but must be deleted to prevent 
the generation of independent fragments. 

 

  

Fig.13 focus on a small area of a cut 

4.5 Results and Perspectives 

  

Fig.14 first print of an inside view of the torus 

The cutting algorithm is fully functional and gives real 
satisfaction, but VRML files must be perfect because 
additive manufacturing slicers can’t fix it due to the 
dataset size and complexity. 

The cut algorithm based on walking on a structured 
grid corresponding to a topological bijection of a 3D 
model is potentially a very effective solution to solve 
identification of intersections between multiple volumes. 

5 Conclusion 

Reflexion on the visual result and aesthetic 
considerations has revealed a diversity in cutting methods 
closer to reality than the usual duality based on the 
position relative to a plane. As 3D printing processes aim 
to afford nice objects, they need to  be provided with 
suitable tools to cut objects in different maner. 

As a reasearch project, it could be considered that 
many objects are homeomorphic to a torus. If all these 
objects can be described as a 2D matrix considered as an 
approximation of the geometrical position of each point of 
the volume surface, it could be a very important evolution 
and give a considerable benefit for the optimisation of 
algorithms working on mesh transformation of highly 
complex geometries. 

Appendix 

Bleed compensation in plaster 3D printing process. 

During the printing process, the printer adds a point of 
binder in the powder in all the places that have been 
identified as solid material. As the point is big regarding to 
the printer definition, around 300µ diameter regarding to 
42µ for 600dpi, the printer has to shift is trajectory by the 
radius of the point inside the part, to give a part with true 
dimension. 

This compensation mechanism is exactly the same 
with all the printing and machining process. Usually, the 
printer is calibrated according to the material used. 

In case of inkjet printer with a post-treatment, the post-
treatment is not known by the printer, so, you have to 
calibrate the bleed compensation regarding to the post-
treatment you use.   

This compensation mechanism can be ignored, 
resulting on a bigger but stronger result, on which badly 
attached fragment will be glued by the process. 
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